Model Specification Testing in Nonparametric Time Series Regression with Nonstationarity

نویسنده

  • Dag Tjøstheim
چکیده

This paper considers a class of nonparametric autoregression models with nonstationarity in the mean and then a class of nonparametric time series regression models with nonstationarity in both the conditional mean and conditional variance. For the nonparametric autoregression case, we propose a nonparametric unit–root test for the conditional mean. For the nonparametric time series regression case, we construct a nonparametric test for testing whether the conditional mean of the nonparametric regression is of a known parametric form indexed by a vector of unknown parameters. We then establish asymptotic distributions of the proposed test statistics. Both the setting and the results differ from earlier work on nonparametric time series regression with stationarity. In addition, we develop a novel bootstrap simulation scheme for the selection of suitable bandwidth parameters involved in the kernel tests as well as the choice of simulated critical values. An example of implementation is given to show how to implement the proposed tests in practice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Test in Parametric Linear Models with Nonparametric Autoregressive Errors

This paper considers a class of parametric models with nonparametric autoregressive errors. A new test is proposed and studied to deal with the parametric specification of the nonparametric autoregressive errors with either stationarity or nonstationarity. Such a test procedure can initially avoid misspecification through the need to parametrically specify the form of the errors. In other words...

متن کامل

A New Test in Parametric Linear Models against Nonparametric Autoregressive Errors

This paper considers a class of parametric models with nonparametric autoregressive errors. A new test is proposed and studied to deal with the parametric specification of the nonparametric autoregressive errors with either stationarity or nonstationarity. Such a test procedure can initially avoid misspecification through the need to parametrically specify the form of the errors. In other words...

متن کامل

Nonparametric Specification Testing for Nonlinear Time Series with Nonstationarity

This paper considers a nonparametric time series regression model with a nonstationary regressor. We construct a nonparametric test for testing whether the regression is of a known parametric form indexed by a vector of unknown parameters. We establish the asymptotic distribution of the proposed test statistic. Both the setting and the results differ from earlier work on nonparametric time seri...

متن کامل

Specification Testing in Nonlinear Time Series with Nonstationarity

This paper considers a class of nonparametric autoregressive processes and then a class of nonparametric time series regression models with a nonstationary regressor. For the autoregression case, we propose a nonparametric unit–root test for the conditional mean. For the nonparametric time series regression case, we construct a nonparametric test for testing whether the regression is of a known...

متن کامل

Nonparametric Estimation and Specification Testing in Nonstationary Time Series Models

In this paper, we consider both estimation and testing problems in a nonlinear time series model with nonstationarity. A nonparametric estimation method is proposed to estimate a sequence of nonparametric departure functions. We also propose a test statistic to test whether the regression function is of a known parametric nonlinear form. The power function of the proposed nonparametric test is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009